Kamienny’s Criterion and the Method of Coleman and Chabauty

نویسندگان

  • MATTHEW H. BAKER
  • MATTHEW BAKER
چکیده

This paper gives a new proof of Kamienny’s Criterion using the method of Coleman and Chabauty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chabauty for Symmetric Powers of Curves

Let C be a smooth projective absolutely irreducible curve of genus g ≥ 2 over a number field K, and denote its Jacobian by J . Let d ≥ 1 be an integer and denote the d-th symmetric power of C by C(d). In this paper we adapt the classic Chabauty–Coleman method to study the K-rational points of C(d). Suppose that J(K) has Mordell–Weil rank at most g− d. We give an explicit and practical criterion...

متن کامل

The Chabauty-coleman Bound at a Prime of Bad Reduction

We extend the sharp version of the Chabauty-Coleman bound on the number of rational points on a curve of genus g ≥ 2 to the case of bad reduction.

متن کامل

Iterated Coleman Integration for Hyperelliptic Curves

The Coleman integral is a p-adic line integral. Double Coleman integrals on elliptic curves appear in Kim’s nonabelian Chabauty method, the first numerical examples of which were given by the author, Kedlaya, and Kim [3]. This paper describes the algorithms used to produce those examples, as well as techniques to compute higher iterated integrals on hyperelliptic curves, building on previous jo...

متن کامل

Thue equations and the method of Chabauty-Coleman

Let OK be any domain with field of fractions K . Let F(x, y) ∈ OK [x, y] be a homogeneous polynomial of degree n, coprime to y, and assumed to have unit content (i.e., the coefficients of F generate the unit ideal in OK ). Assume that gcd(n, char(K )) = 1. Let h ∈ OK and assume that the polynomial hzn − F(x, y) is irreducible in K[x, y, z]. We denote by X F,h/K the nonsingular complete model of...

متن کامل

COMPOSITIO MATHEMATICA The Chabauty–Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions

Let X be a curve over a number field K with genus g > 2, p a prime of OK over an unramified rational prime p > 2r, J the Jacobian of X, r = rank J(K), and X a regular proper model of X at p. Suppose r < g. We prove that #X(K) 6 #X (Fp) + 2r, extending the refined version of the Chabauty–Coleman bound to the case of bad reduction. The new technical insight is to isolate variants of the classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999